Abstract

The reconstruction of snapshot compressive imaging (SCI) presents a significant challenge in signal processing. The primary goal of SCI is to employ a low-dimensional sensor to capture high-dimensional data in a compressed form. As a result, compared to traditional compressive sensing, SCI emphasizes capturing structural information and enhancing the reconstruction quality of high-dimensional videos and hyperspectral images. This paper proposes a novel SCI reconstruction method by integrating non-convex regularization approximation in conjunction with rank minimization. Furthermore, we address the characterization of structural information by leveraging nonlocal self-similarity across video frames to improve the reconstruction quality. We also develop an optimization algorithm based on the alternating direction method of multipliers (ADMM) to solve the model and provide a convergence algorithm analysis. Extensive experiments demonstrate that the proposed approach can potentially reconstruct SCI effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.