Abstract

Delamination is a typical failure mode of composite materials caused by weak bonding. It arises when a crack initiates and propagates under a destructive loading. Given the physical law characterizing the properties of the interlayer adhesive between the bonded bodies, we consider the problem of computing the propagation of the crack front and the stress field along the contact boundary. This leads to a hemivariational inequality, which after discretization by finite elements we solve by a nonconvex bundle method, where upper-$C^1$ criteria have to be minimized. As this is in contrast with other classes of mechanical problems with non-monotone friction laws and in other applied fields, where criteria are typically lower-$C^1$, we propose a bundle method suited for both types of nonsmoothness. We prove its global convergence in the sense of subsequences and test it on a typical delamination problem of material sciences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.