Abstract

The authors developed a noncontact low-frequency ultrasound device that delivers high-intensity mechanical force based on phased-array technology. It may aid wound healing because it is likely to be associated with lower risks of infection and heat-induced pain compared with conventional ultrasound methods. The authors hypothesized that the microdeformation it induces accelerates wound epithelialization. Its effects on key wound-healing processes (angiogenesis, collagen accumulation, and angiogenesis-related gene transcription) were also examined. Immediately after wounding, bilateral acute wounds in C57BL/6J mice were noncontact low-frequency ultrasound- and sham-stimulated for 1 hour/day for 3 consecutive days (10 Hz/90.6 Pa). Wound closure (epithelialization) was recorded every 2 days as the percentage change in wound area relative to baseline. Wound tissue was procured on days 2, 5, 7, and 14 (five to six per time point) and subjected to histopathology with hematoxylin and eosin and Masson trichrome staining, CD31 immunohistochemistry, and quantitative polymerase-chain reaction analysis. Compared to sham-treated wounds, ultrasound/phased-array-treated wounds exhibited significantly accelerated epithelialization (65 ± 27 percent versus 30 ± 33 percent closure), angiogenesis (4.6 ± 1.7 percent versus 2.2 ± 1.0 percent CD31 area), and collagen deposition (44 ± 14 percent versus 28 ± 13 percent collagen density) on days 5, 2, and 5, respectively (all p < 0.05). The expression of Notch ligand delta-like 1 protein (Dll1) and Notch1, which participate in angiogenesis, was transiently enhanced by treatment on days 2 and 5, respectively. The authors' noncontact low-frequency ultrasound phased-array device improved the wound-healing rate. It was associated with increased early neovascularization that was followed by high levels of collagen-matrix production and epithelialization. The device may expand the mechanotherapeutic proangiogenesis field, thereby helping stimulate a revolution in infected wound care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call