Abstract

Large-scale separated surface is very common in modern manufacturing industry. The measurement of the flatness of such surfaces is one of the most important procedures when evaluating the manufacturing quality. Usually, the measurement needs to be accomplished in an in-situ and non-contact way. Although there are many conventional approaches such as autocollimator, capacitance displacement sensor and even CMM, they can not meet the needs from the separated surfaces measurement either because of their contact-nature or inapplicable to separated surfaces. A non-contact large-scale separated surfaces flatness measurement device utilizing laser beam and laser distance sensor (LDS) is proposed. The laser beam is rotated to form an optical reference plane. The LDS is used to measure the distance between the surface and the sensor accurately. A Position Sensitive Detector (PSD) is mounted with the LDS firmly to determine the distance between the LDS and the reference plane and then the distance between the surface and the reference plane can be obtained by subtracting the two distances. The device can be easily mounted on a machine-tool spindle and is moved to measure all the separated surfaces. Then all the data collected are used to evaluate the flatness of these separated surfaces. The accuracy analysis, the corresponding flatness evaluation algorithm, the prototype construction and experiments are also discussed. The proposed approach and device feature as high accuracy, in-situ usage and the higher degree of automatic measurement, and can be used in the areas that call for non-contact and separated surfaces measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.