Abstract
Combined scanning electrochemical atomic force microscopy (SECM-AFM) is a recently introduced scanned probe microscopy technique where the probe, which consists of a tip electrode and integrated cantilever, is capable of functioning as both a force sensor, for topographical imaging, and an ultramicroelectrode for electrochemical imaging. To extend the capabilities of the technique, two strategies for noncontact amperometric imaging-in conjunction with contact mode topographical imaging-have been developed for the investigation of solid-liquid interfaces. First, SECM-AFM can be used to image an area of the surface of interest, in contact mode, to deduce the topography. The feedback loop of the AFM is then disengaged and the stepper motor employed to retract the tip a specified distance from the sample, to record a current image over the same area, but with the tip held in a fixed x-y plane above the surface. Second, Lift Mode can be employed, where a line scan of topographical AFM data is first acquired in contact mode, and the line is then rescanned to record SECM current data, with the tip maintained at a constant distance from the target interface, effectively following the contours of the surface. Both approaches are exemplified with SECM feedback and substrate generation-tip collection measurements, with a 10-microm-diameter Pt disk UME serving as a model substrate. The approaches described allow electrochemical images, acquired with the tip above the surface, to be closely correlated with the underlying topography, recorded with the tip in intimate contact with the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.