Abstract

The scanning electrochemical microscopy-atomic force microscopy (SECM-AFM) technique is used to map catalytic currents post Fe and N surface modification of graphitic carbon with an ultra-high resolution of 50 nm. The oxidation current of the partial reduction product, hydrogen peroxide, was also mapped in the same location in the graphitic carbon. The current mapping and ex situ spectroscopic evidence revealed that Fe-coordinated nitrogen sites formed both in the edge and basal planes of highly ordered pyrolytic graphite (HOPG) constitute the primary oxygen reduction catalytic sites in acid solutions of this important yet insufficiently understood class of catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.