Abstract

Noncommutativity error of a strapdown inertial navigation system (SINS) in an unmanned aerial vehicle's (UAV) vibration environment is analysed. The traditional analysis of noncommutativity errors is based on a coning motion model, which is inconsistent with a UAV's vibration environment. In this paper the UAV's vibration form is discussed and is modelled as a sinusoidal angular vibration and a random angular vibration. Then, SINS motion models under these two forms of vibration are built up and the formulas for the noncommutativity errors are derived separately. In addition, the effect of a multi-sample algorithm is explored, which is an effective method for compensating for noncommutativity errors in cases of coning motion. Finally, the UAV's vibration environment is simulated and it is indicated that the simulation results of the SINS's noncommutativity errors are consistent with theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.