Abstract
PurposeMotivated by the problems that the positioning error of strap-down inertial navigation system (SINS) accumulates over time and few sensors are available for midwater navigation, this paper aims to propose a self-aided SINS scheme for the spiral-diving human-occupied vehicle (HOV) based on the characteristics of maneuvering pattern and SINS error propagation.Design/methodology/approachFirst, the navigation equations of SINS are simultaneously executed twice with the same inertial measurement unit (IMU) data as input to obtain two sets of SINS. Then, to deal with the horizontal velocity provided by one SINS, a delay-correction high-pass filter without phase shift and amplitude attenuation is designed. Finally, the horizontal velocity after processing is used to integrate with other SINS.FindingsSimulation results indicate that the horizontal positioning error of the proposed scheme is less than 0.1 m when an HOV executes spiral diving to 7,000 meters under the sea and it is inherently able to estimate significant sensors biases.Originality/valueThe proposed scheme can provide a precise navigation solution without error growth for spiral-diving HOV on the condition that only IMU is required as a navigation sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.