Abstract

The response of a test particle, both for the free case and under the harmonic oscillator potential, to circularly polarized gravitational waves is investigated in a noncommutative quantum mechanical setting. The system is quantized following the prescription in \cite{ncgw1}. Standard algebraic techniques are then employed to solve the Hamiltonian of the system. The solutions, in both cases, show signatures of the coordinate noncommutativity. In the harmonic oscillator case, this signature plays a key role in altering the resonance point and the oscillation frequency of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.