Abstract

We demonstrate how a one parameter family of interacting non-commuting Hamiltonians, which are physically equivalent, can be constructed in non-commutative quantum mechanics. This construction is carried out exactly (to all orders in the non-commutative parameter) and analytically in two dimensions for a free particle and a harmonic oscillator moving in a constant magnetic field. We discuss the significance of the Seiberg-Witten map in this context. It is shown for the harmonic oscillator potential that an approximate duality, valid in the low energy sector, can be constructed between the interacting commutative and a non-interacting non-commutative Hamiltonian. This approximation holds to order 1/B and is therefore valid in the case of strong magnetic fields and weak Landau-level mixing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.