Abstract

The discovery of two-dimensional (2D) van der Waals magnets opened unprecedented opportunities for the fundamental exploration of magnetism in quantum materials and the realization of next generation spintronic devices. Here, based on a multiscale modelling approach that combines first-principles calculations and a Heisenberg model supplied with ab-initio parameters, we report a strong magnetoelastic coupling in a free-standing monolayer of CrTe2. We demonstrate that different crystal structures of a single CrTe2 give rise to non-collinear magnetism through magnetic frustration and emergence of the Dzyaloshinskii–Moriya interaction. Utilizing atomistic spin dynamics, we perform a detailed investigation of the complex magnetic properties pertaining to this 2D material impacted by the presence of various types of structural distortions akin to charge density waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call