Abstract

Plasmons are commonly interpreted with classical electrodynamics, while nonclassical effects may influence the dynamics of plasmon resonances as the plasmon confinement approaches the few-nanometer scale. However, an unambiguous approach to quantify the degree of nonclassical dynamics remains. We propose a nonclassical-impact parameter (NCI) to characterize the degree of nonclassical effects from an energy perspective, i.e., which fraction of the total electromagnetic energy is attributed to classical electrodynamic terms and which fraction is correspondingly to be assigned to nonclassical degrees of freedom? We show that the NCI relates directly to two fundamental parameters of plasmon resonances: the loss function and the quality factor. Guided by the NCI, we discuss the nonclassical effects of plasmon waveguiding modes of metallic slab waveguides, and highlight the general features of the nonclassical effects at different microscopic levels by contrasting the numerical results from the semiclassical hydrodynamic Drude model (HDM) and the microscopic random-phase approximation (RPA). The formal relation between the HDM and the RPA is also established for metals by exploring the limit of an infinite work function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.