Abstract

A linear scalar nonautonomous initial-value problem (IVP) is governed by a scalar lambda(t) with a nonpositive real part. For a wide class of linear multistep methods, including BDF4-6, it is shown that negative real lambda(t) may be chosen to generate instability in the method when applied to the IVP. However, a uniform-in-time stability result holds when lambda(.) is a Lipschitz function, subject to a related restriction on h. The proof involves the construction of a Lyapunov function based on a convex combination of G-norms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.