Abstract

This paper discusses a subcritical crack initiation mechanism in a brittle solid within a real range of applied stress. A medium deformed by uniaxial tension is considered as an open nonequilibrium system of nuclei and electrons. Structural relaxation of the medium begins with the excitation of dynamic displacements during nonadiabatic Landau-Zener transitions. Dynamic displacements induce the instability of the medium to the longitudinal displacement wave. The kinetics of structural relaxation is described by two nonlinear parabolic kinetic equations for dynamic order parameters. Conditions are derived for the existence of localized solutions (autosolitons). The excitation of autosolitons leads to a local elongation and cross-sectional reduction of the specimen. The resulting neck is a subcritical crack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.