Abstract
We present quantum electron transport theory that incorporates dynamical effects of motion of atoms on electrode-molecule interfaces in the calculations of the electric current. The theory is based on non-equilibrium Green's functions. We separate time scales in the Green's functions as fast relative time and slow central time. The derivative with respect to the central time serves as a small parameter in the theory. We solve the real-time Kadanoff-Baym equations for molecular Green's functions using Wigner representation and keep terms up to the second order with respect to the central time derivatives. Molecular Green's functions and consequently the electric current are expressed as functions of molecular junction coordinates as well as velocities and accelerations of molecule-electrode interface nuclei. We apply the theory to model a molecular system and study the effects of non-adiabatic nuclear motion on molecular junction conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.