Abstract

Multiple joint movements during human quiet standing exhibit characteristic inter-joint coordination, shortly referred to as reciprocal relationship, in which angular acceleration of the hip joint is linearly and negatively correlated with that of the ankle joint (antiphase coordination) and, moreover, acceleration of the center of mass (CoM) of the double-inverted-pendulum (DIP) model of the human body is close to zero constantly. A question considered in this study is whether the reciprocal relationship is established by active neural control of the posture, or rather it is a biomechanical consequence of non-actively controlled body dynamics. To answer this question, we consider a DIP model of quiet standing, and show that the reciprocal relationship always holds by Newton's second law applied to the DIP model with human anthropometric dimensions, regardless of passive and active joint torque patterns acting on the ankle and hip joints. We then show that characteristic frequencies included in experimental sway trajectories with the reciprocal relationship match with harmonics of the eigenfrequency of the stable antiphase eigenmode of the non-actively controlled DIP-like unstable body dynamics. The results suggest that non-actively controlled DIP-like mechanical dynamics is a major cause of the minimization of the CoM acceleration during quiet standing, which is consistent with a type of control strategy that allows switching off active neural control intermittently for suitable periods of time during quiet standing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call