Abstract

Low-lying states in the even-even light platinum isotopes 176Pt, 178Pt, 180Pt and 182Pt have been populated using β + /EC decay from parent gold nuclei, created in (HI, xn) reactions. State energies, spins and parities and γ-ray branching ratios were determined using γ-ray and electron spectroscopy. Whereas non-yrast states were observed in 178Pt, 180Pt and 182Pt, none were seen in 176Pt. The excitation energies of the observed states are analysed in terms of a band-mixing model, yielding the moments of inertia of the unperturbed bands. Branching ratios and ground-state-band quadrupole moments are calculated and compared with experimental values. The results indicate that the two lowest-lying 0 + states in each of the light Pt isotopes are formed from the mixing of two intrinsic states of different deformation, and other low-lying states can be described as admixtures of rotational states built on these intrinsic states, and on γ-vibrational states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.