Abstract

Here, a non-toxic, flexible, low-cost, and disposable multiwalled carbon nanotube (MWCNT)-based screen-printed electrode (SPE) was developed for non-invasive health monitoring applications. A novel MWCNT-based conductive paste formulation was prepared and optimized for printing SPEs using a computer numerical control (CNC)-made stencil. The electrodes were electrochemically characterized and subjected to physical stress to investigate their mechanical durability in extreme situations such as heavy exercise. The reproducibility of the fabrication approach and the stability of the electrodes were also demonstrated. The electrochemical performance of the electrodes was tested with first dopamine (DA) and then glucose. The SPE displayed a linear response in the DA concentration range of 5–500 μM with a limit-of-detection (LOD) of 0.87 μM. Detection of glucose was carried out based on electrochemical-enzymatic redox cycling in artificial sweat; wherein the flexible SPE-based biosensor exhibited a linear response, particularly up to 1 mM with an LOD of 31.7 μM. It is likely that the high sensitivity was achieved due to the large surface-to-volume ratio of MWCNTs and micro/nanoporous network morphology of the electrode surface which was observed in scanning electron microscopy (SEM). Cytotoxicity tests confirmed that the flexible MWCNT-SPEs are non-toxic and therefore safe for non-invasive health monitoring. As a result, the electrodes displayed excellent electrochemical behavior and are expected to contribute to wearable sensor technology due to features such as high stability, sensitivity, flexibility, and non-toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.