Abstract
A computer model was developed to predict responses of lactating ewes to concentrate supplementation, whether on pasture or stall-fed, given concentrate once per day or in multiple feedings, and suckling multiple lambs. The model considers effects of concentrate supplementation on organic acid production, saliva flow, ruminal pH, and forage intake. The user defines ewe BW, feed composition, and concentrate feeding times and amounts. The reference ewe has free access to forage and water. Upon consumption, forages and concentrates enter into lag pools for 2.0 and 0.24 h, respectively. Carbohydrates then enter ruminal pools of degradable fiber, undegradable fiber, or nonstructural carbohydrate, from which they are degraded or pass to the lower gut. Rapid dissociation of organic acids from carbohydrate fermentation and buffers from rumination are simulated to determine ruminal pH according to the Henderson-Hasselbach equation. The pH, in turn, affects fiber degradation rates. Forage intake continues during daylight hours until ruminal NDF exceeds 1.0% of BW, or organic acid concentration exceeds 130 mM. A circadian pattern of organic acid concentrations and pH of rumen contents with multiple concentrate feedings was simulated by the model with root mean square prediction error of 7.7 and 3.0 to 4.0% of the observed mean, respectively. However, ignoring fermentation of dietary protein may have caused an underestimation of organic acid production rates. The model predicted the increase in total DMI and the substitution effect on forage intake of increasing levels of concentrate supplementation. Simulations suggested that a single concentrate meal daily was best fed in the evening to minimize the substitution effect, and that there was no benefit in forage intake to feeding 2 kg/d concentrate in more than two meals per day.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.