Abstract
We explored the potential for the prebiotic oligofructose and prebiotic candidate 2'fucosyllactose, alone and in combination (50:50 blend) to induce physiologically relevant increases in neurotransmitter (γ-aminobutyric acid, serotonin, tryptophan, and dopamine) and organic acid (acetate, propionate, butyrate, lactate, and succinate) production as well as microbiome changes using anaerobic pH-controlled in vitro batch culture fermentations over 48h. Changes in organic acid and neurotransmitter production were assessed by gas chromatography and liquid chromatography and, bacterial enumeration using fluorescence in situ hybridization, respectively. Both oligofructose and oligofructose/2'fucosyllactose combination fermentations induced physiologically relevant concentrations of γ-aminobutyric acid, acetate, propionate, butyrate, and succinate at completion (all P ≤ .05). A high degree of heterogeneity was seen amongst donors in both neurotransmitter and organic acid production in sole 2'FL fermentations suggesting a large responder/nonresponder status exists. Large increases in Bifidobacterium, Lactobacillus, and Bacteroides numbers were detected in oligofructose fermentation, smallest increases being detected in 2'fucosyllactose fermentation. Bacterial numbers in the combined oligofructose/2'fucosyllactose fermentation were closer to that of sole oligofructose. Our results indicate that oligofructose and oligofructose/2'fucosyllactose in combination have the potential to induce physiologically relevant increases in γ-aminobutyric and organic acid production along with offsetting the heterogenicity seen in response to sole 2'fucosyllactose supplementation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.