Abstract
We construct the non-stationary Ruijsenaars functions (affine analogue of the Macdonald functions) in the special case $\kappa=t^{-1/N}$, using the intertwining operators of the Ding-Iohara-Miki algebra (DIM algebra) associated with $N$-fold Fock tensor spaces. By the $S$-duality of the intertwiners, another expression is obtained for the non-stationary Ruijsenaars functions with $\kappa=t^{-1/N}$, which can be regarded as a natural elliptic lift of the asymptotic Macdonald functions to the multivariate elliptic hypergeometric series. We also investigate some properties of the vertex operator of the DIM algebra appearing in the present algebraic framework; an integral operator which commutes with the elliptic Ruijsenaars operator, and the degeneration of the vertex operators to the Virasoro primary fields in the conformal limit $q \rightarrow 1$.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.