Abstract
AbstractThe Fox–Wright function is a very general form of function, covering many families of special functions as particular cases. Any special function can be used as a kernel for a fractional integral operator, but which of these operators will satisfy desiderata such as a semigroup property for composition? This paper provides a rigorous categorisation of all such fractional integral operators which have a semigroup property in any of their parameters. We discover that nearly all possible semigroup properties arise from the Chu–Vandermonde identity, with the Prabhakar fractional calculus emerging as one special case. For any integral operator with such a semigroup property, it is possible to construct a complete model of fractional calculus, including both integral and derivative operators which interact with each other in a natural way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.