Abstract
Wind velocity is usually assumed to obey a stationary stochastic process in wind engineering, and this may cause significant bias in describing extremely severe strong wind such as typhoons and thunderstorms. To take into account the non-stationary characteristics of extreme wind, a novel evolutionary power spectral density (EPSD) model is proposed, and the spectral representation method (SRM) is introduced to simulate the whole process of strong winds. Firstly, the wavelet transform (WT) method is adopted to capture the three-dimensional time-varying properties of the low-frequency mean winds, and the associated turbulence features, including turbulent intensity, gust factor, probability density function, and power spectrum, are analyzed in depth. Secondly, the measured horizontal EPSD of strong winds are estimated. Thirdly, the performance of the proposed EPSD model is validated. Finally, the whole process of non-stationary strong winds are simulated and discussed. The results show that the proposed EPSD models are in good agreement with the measured EPSD, and the time-frequency features of the power spectrum of the simulated winds are well reproduced, which provides a powerful tool for large eddy simulation and wind engineering studies under non-stationary extreme wind climate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.