Abstract
The non-Schmid effects in DO3 ordered Fe3Al (DO3-Fe3Al) are investigated by utilizing experimental measurements of the onset of slip and atomistic scale simulations to study slip directionality and core effects. Uniaxial tension and compression experiments were conducted on DO3-Fe3Al single crystals utilizing high resolution Digital Image Correlation (DIC) to measure local slip strain evolution. The measured critical resolved shear stress (CRSS) values exhibited close agreement with the theoretical values upon developing a modified Peierls-Nabarro (P-N) formalism relying on molecular dynamics (MD) simulation results. Both experimental and theoretical values indicate the break-down of Schmid Law due to two factors: the role of non-glide shear (NGS) stress component acting on the glide plane, called the NGS effect, and twinning-antitwinning asymmetry, termed the TA effect. To ascertain the role of NGS stress component on the dislocation core structures, molecular statics (MS) simulations were conducted upon imposing elastic-anisotropic dislocation displacement fields with Eshelby-Stroh formalism. Both experimental measurements and modified P-N calculations confirm that the applied NGS stress component is as important as TA slip asymmetry on the break-down of Schmid Law in CRSS values. The calculated core spreading suggests that the extent of the relative displacements on {110} family planes, favoring either twinning or antitwinning shear, can significantly contribute to the non-Schmid behavior of DO3-Fe3Al with the accompanying elastic shear coupling between NGS stress component and glide shear (GS) strain. Further extension of the modified P-N formalism towards yielding behavior at continuum scale is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.