Abstract

This article is the first in a series designed to gain insight into the stellar oscillation problem from a somewhat novel point of view: that of potential scattering, well-known in the quantum mechanical literature. In this paper the known theoretical foundations are developed and applied in the context of the astrophysical problem, wherein the star itself (rather than any portion of it) is the potential which “scatters” waves and “traps” them. The basis for the identification of a precisely defined scattering problem is the existence of a linear Schrodinger equation associated both globally (Section 2) and locally (Section 8) with the nonlinear eigenvalue equation for nonradial stellar pulsations. The paper is also designed to be a fairly complete account of the relevant mathematical topics that are germane to a study of this kind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.