Abstract
AbstractWe construct a non-polynomial generalization of the q-Askey scheme. Whereas the elements of the q-Askey scheme are given by q-hypergeometric series, the elements of the non-polynomial scheme are given by contour integrals, whose integrands are built from Ruijsenaars’ hyperbolic gamma function. Alternatively, the integrands can be expressed in terms of Faddeev’s quantum dilogarithm, Woronowicz’s quantum exponential, or Kurokawa’s double sine function. We present the basic properties of all the elements of the scheme, including their integral representations, joint eigenfunction properties, and polynomial limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.