Abstract

summary We carried out hydrogeological, geophysical, hydrochemical, isotopic, and molecular biological investigations in a fractured carbonate aquifer in southern Italy to verify if prolonged variations in groundwater salinity with depth can be due to mixing processes between fresh infiltration water and groundwater. All investigations revealed the formation of a non-permanent halocline at the experimental site, whose thickness and shape varies over time. Variations in thickness and shape are influenced by infiltration processes. Three main types of Electrical Conductivity (EC) profiles were found during the research period. In the high-flow period, the EC profile consisted of a transition layer and a nearly homogeneous higher salinity groundwater layer, and no mixed layer was observed. A nearly-homogeneous mixed layer was detected in the low-flow period, excluding the late recession when the EC profile was characterized by a higher salinity groundwater layer and a negligible transition layer. The EC profile through the transition layer was approximately symmetric and linear, probably due to a velocity shear across this layer. The velocity shear was probably caused by the difference in opening-porosity detected between the upper and lower carbonate bedrock through geophysical investigations. The investigated phenomenon is due to water that infiltrates very close to the observation well. In fact: (a) the isotopic composition of the lower salinity groundwater layer in early recharge 2007/2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.