Abstract

Active force generation in living organisms, which is mainly involved in actin cytoskeleton and myosin molecular motors, plays a crucial role in various biological processes. Although the contractile properties of actomyosin have been extensively investigated, their dynamic contribution to a deformable membrane remains unclear because of the cellular complexities and the difficulties associated with in vitro reconstitution. Here, by overcoming these experimental difficulties, we demonstrate the dynamic deformation of a reconstituted lipid interface coupled with self-organized structure of contractile actomyosin. Therein, the lipid interface repeatedly oscillates without any remarkable periods. The oscillatory deformation of the interface is caused by the aster-like three-dimensional hierarchical structure of actomyosin inside the droplet, which is revealed that the oscillation occurs stochastically as a Poisson process.

Highlights

  • CBB spherical 36 min 44 min oscillation 52 min wrinkling 60 min deformation of membranes caused by the continuous remodeling of the contractile actomyosin, where the actomyosin distribution and contractility should interact with the membrane elasticity and interfacial tension, remains as a crucial open question

  • The results suggest that the mechanical interconnection between the aster structure and the soft interface was mediated by actomyosin network, and the contractile force generated by the mediated actomyosin was converged and transmitted to the lipid interface through the actomyosin bundle as an inward force

  • The resultant interfacial deformation indicates that electrostatic attraction is sufficient to maintain the connection between the cortex and the lipid interface, leading to interfacial deformation; the result suggests that the force generation and cross-linking between the bundles in the actomyosin core of the aster-like structure are more prominent than those underneath the lipid interface, probably due to the dimensionality of the actomyosin structure, i.e., the aster-like aggregation in the aqueous phase is three-dimensional structure with more cross-links than the cortex-like two-dimensional structure underlying the interface

Read more

Summary

Introduction

CBB spherical 36 min 44 min oscillation 52 min wrinkling 60 min deformation of membranes caused by the continuous remodeling of the contractile actomyosin, where the actomyosin distribution and contractility should interact with the membrane elasticity and interfacial tension, remains as a crucial open question. It is because of a technical problem: Suitable connection between a lipid membrane and contractile actomyosin was difficult to reconstitute in vitro. For the first time, the dynamical repetitive deformation of the spherical interface, which continued for several tens of minutes, coupled with the structural formation of the encapsulated actin and myosin

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.