Abstract
Electrostatic interactions between actin filaments and myosin molecules, which are ubiquitous proteins in eukaryotes, are crucial for their enzymatic activity and motility. Nonspecific electrostatic interactions between proteins are unavoidable in cells; therefore, it is worth exploring how ambient proteins, such as polyelectrolytes, affect actin-myosin functions. To understand the effect of counterionic proteins on actin-myosin, we examined ATPase activity and sliding velocity via actin-myosin interactions in the presence of the basic model protein hen egg lysozyme. In an in vitro motility assay with ATP, the sliding velocity of actin filaments on heavy meromyosin (HMM) decreased with increasing lysozyme concentrations. Actin filaments were completely stalled at a lysozyme concentration above 0.08 mg/mL. Lysozyme decreased the ATP hydrolysis rate of the actin-HMM complex but not that HMM alone. Co-sedimentation assays revealed that lysozyme enhanced the binding of HMM to actin filaments in the presence of ATP. Additionally, lysozyme could bind to actin and myosin filaments. The inhibitory effect of poly-l-lysine, histone mixture, and lactoferrin on the motility of actin-myosin was higher than that of lysozyme. Thus, nonspecific electrostatic interactions of basic proteins are involved in the bundling of actin filaments and modulation of essential functions of the actomyosin complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.