Abstract

Noncommutative spacetimes lead to nonlocal quantum field theories (qft's) where spin-statistics theorems cannot be proved. For this reason, and also backed by detailed arguments, it has been suggested that they get corrected on such spacetimes leading to small violations of the Pauli principle. In a recent paper \cite{Pauli}, Pauli-forbidden transitions from spacetime noncommutativity were calculated and confronted with experiments. Here we give details of the computation missing from this paper. The latter was based on a spacetime $\mathcal{B}_{\chi\vec{n}}$ different from the Moyal plane. We argue that it quantizes time in units of $\chi$. Energy is then conserved only mod $\frac{2\pi}{\chi}$. Issues related to superselection rules raised by non-Pauli effects are also discussed in a preliminary manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.