Abstract

A non-parallel linear stability analysis which utilizes the assumptions made in the parabolized stability equations is applied to the buoyancy-driven flow in a differentially heated cavity. Numerical integration of the complete Navier–Stokes and energy equations is used to validate the non-parallel theory by introducing an oscillatory heat input at the upstream end of the boundary layer. In this way the stability properties are obtained by analysing the evolution of the resulting disturbances. The solutions show that the spatial growth rate and wavenumber are highly dependent on the transverse location and the disturbance flow quantity under consideration. The local solution to the parabolized stability equations accurately predicts the wave properties observed in the direct simulation whereas conventional parallel stability analysis overpredicts the spatial amplification and the wavenumber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.