Abstract

The convective instability of a vertical thermal boundary layer adjacent to the sidewall of a water-filled differentially heated cavity over a range of Rayleigh numbers (5×107–3.44×109) is investigated using direct stability analysis. The results show that the dominant frequency of the convective instability changes as perturbations travel downstream due to the presence of the horizontal boundaries, which is different from that of the vertical thermal boundary layer adjacent to an infinite or semi-infinite thermal wall. The features of the convective instability of the vertical thermal boundary layer adjacent to the sidewall are described, and the dependence of the dominant frequency on the Rayleigh number is obtained. Furthermore, the dependence of the flow rate and heat transfer through the cavity on the Rayleigh number is quantified by numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.