Abstract

In our effort to study vanadium chalcogenide chemistry, we have synthesized and characterized a class of non-oxido divanadium(IV) and divanadium(V) complexes with chalcogenide and dichalcogenide as bridges. All structures consist of a similar divanadium motif, in which two metal centers are bridged by one μ-chalcogenide and one μ-η(2):η(2)-dichalcogenide, forming a V2(μ-E)(μ-η(2):η(2)-E2) (E = S or Se) core structure. These compounds are [V(IV)2(PS3)2(μ-Se2)(μ-Se)][PPh4]2 (1), [V(V)2(PS3'')2(μ-Se2)(μ-Se)] (2), [V(V)2(PS3'')2(μ-S2)(μ-S)] (3a) and [V(V)2(PS3)2(μ-S2)(μ-S)] (3b) ([PS3](3-) = P(C6H4-2-S)3 and [PS3''](3-) = P(C6H3-3-SiMe3-2-S)3). Compound 1 exhibits diamagnetic behavior, indicating strong antiferromagnetic coupling between two d(1) centers. Compounds 2 and 3a-b have the highest oxidation states for vanadium ions (+5/+5) among those reported divanadium chalcogenide clusters. The work demonstrates that high-valent divanadium chalcogenide clusters can be obtained with the activation of elemental chalcogens by low-valent vanadium ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.