Abstract

In the present study, the melting phase-change heat transfer of nano-enhanced phase-change octadecane by using mesoporous silica particles is investigated in an inclined cavity, theoretically. The presence of mesoporous silica particles induces non-Newtonian effects in the molten octadecane. A phase-change interface-tracking approach, deformed mesh technique, is employed to track the phase-change interface and heat transfer in the cavity. The Arbitrary Lagrangian-Eulerian (ALE) moving mesh technique along with the finite element method is adopted to solve the governing equations for conservation of mass, momentum, and energy during the phase-change process. A re-meshing technique and an automatic time step control approach are employed to control the quality of the deformed mesh and the computed numerical solution. The effect of various mass fractions of nanoparticles and various inclination angles of the enclosure on the heat transfer and phase-change behavior of nano-enhanced octadecane are addressed. The outcome reveals that using the mesoporous silica particles diminish the heat transfer in the enclosure. Although the presence of nanoparticles improved the conductive heat transfer, a reduction in the phase-change heat transfer performance of the enclosure can be observed, which is due to the increase of the viscosity (consistency parameter) of the liquid and suppression of natural convective flows. Moreover, the presence of nanoparticles reduces the latent heat capacity of octadecane as they do not contribute to the phase-change energy storage. Dispersing 5% mass fraction of nanoparticles in octadecane can reduce the heat transfer up to 50% and increase the consistency parameter by three folds. The angle of inclination of the cavity also plays an important role in the heat transfer characteristics. Tilting the cavity by -75° leads to an 80% reduction in the heat transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.