Abstract

A study of non-Newtonian inertia squeeze film in rectangular stepped plates has been presented in this paper. Applying the momentum integral method incorporating the micro-continuum theory of non-Newtonian fluids, a non-Newtonian inertia lubrication equation is derived. It is found that the fluid inertia effects yield in a higher normal load capacity as well as a longer squeeze film time as compared to the non-Newtonian stepped squeeze film in the absence of fluid inertia forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.