Abstract

A study of non-Newtonian inertia squeeze film in rectangular stepped plates has been presented in this paper. Applying the momentum integral method incorporating the micro-continuum theory of non-Newtonian fluids, a non-Newtonian inertia lubrication equation is derived. It is found that the fluid inertia effects yield in a higher normal load capacity as well as a longer squeeze film time as compared to the non-Newtonian stepped squeeze film in the absence of fluid inertia forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call