Abstract

Sinusoidal oscillatory flow of blood and of aqueous glycerol solutions was produced in rigid cylindrical tubes. For aqueous glycerol, the amplitude of the measured pressure gradient wave form conformed closely to that predicted by Womersley's theory of oscillatory flow, up to Reynolds numbers approaching 2000. Blood differed significantly from aqueous glycerol solutions of comparable viscosity, especially at low frequencies and high hematocrits. As frequency increased, the hydraulic impedance of blood decreased to a minimum at a frequency of about 1-2 CPS, increasing monotonically at higher frequencies. The dynamic apparent viscosity of blood, calculated from Womersley's theory, decreased with increasing flow amplitude. The reactive component of the hydraulic impedance increased with frequency as predicted by theory; the resistive component decreased with increasing frequency, differing from the resistance of a Newtonian fluid which increased with frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call