Abstract

Biodiesel has gained a great deal of attention as a new sustainable energy alternative to petroleum-based fuels. The subsequent increased biodiesel production requires new utilization of glycerol, which is a byproduct of biodiesel synthesis. Photocatalytic biohydrogen generation using ZnO with the aid of simultaneous deposition of copper from an aqueous biomass-derivative glycerol solution was investigated. The effects of the concentration of glycerol solution, Cu ion concentration, and reaction temperature on biohydrogen generation were investigated. The photocatalytic biohydrogen production rate increased as the concentration of aqueous glycerol solution increased, and the observed data could be fitted to the Langmuire–Hinshelwood kinetic models. The photocatalytic H2 production efficiency with ZnO could be significantly improved by simultaneous Cu deposition. The photocatalytic biohydrogen production rate was dependent on temperature, and increased as the temperature increased. Under the optimal conditions, the photocatalytic H2 production rate was 72 µmol h−1 g−1 from the aqueous biomass-derivative glycerol solution. Possible mechanisms for the oxidation of glycerol solution and photocatalytic hydrogen generation were proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call