Abstract
We develop non-nested tests in a general spatial, spatio-temporal or panel data context. The spatial aspect can be interpreted quite generally, in either a geographical sense, or employing notions of economic distance, or when parametric modelling arises in part from a common factor or other structure. In the former case, observations may be regularly-spaced across one or more dimensions, as is typical with much spatio-temporal data, or irregularly-spaced across all dimensions; both isotropic models and non-isotropic models can be considered, and a wide variety of correlation structures. In the second case, models involving spatial weight matrices are covered, such as “spatial autoregressive models”. The setting is sufficiently general to potentially cover other parametric structures such as certain factor models, and vector-valued observations, and here our preliminary asymptotic theory for parameter estimates is of some independent value. The test statistic is based on a Gaussian pseudo-likelihood ratio, and is shown to have an asymptotic standard normal distribution under the null hypothesis that one of the two models is correct; this limit theory rests strongly on a central limit theorem for the Gaussian pseudo-maximum likelihood parameter estimates. A small Monte Carlo study of finite-sample performance is included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.