Abstract

Compositional alterations to high-entropy alloys (HEAs) allow further evolution of these materials by adjusting their property profiles. This way, they can be used for coating technologies and surface-protection applications. In the present work, minor quantities of the non-metallic alloying constituents, BSiC, were added to the CrFeNi base system. The alloy development was carried out in an electric arc furnace in comparison with the nickel-based alloy Ni-600. With regard to the BSiC-free variant, the wear resistance can be significantly increased. The powder was manufactured by inert gas atomization and characterized, followed by processing via high-velocity oxy-fuel spraying (HVOF) and high velocity laser metal deposition (HS-LMD). Depending on the manufacturing conditions, the proportion and shape of the precipitates within the microstructure differ. Compared to both the reference system and the as-cast condition, the coating systems demonstrated comparable or improved resistance to wear. The evaluation of the process–structure–property relationships confirmed the great potential of developing load-adapted HEA systems using non-metallic alloy constituents in the field of surface engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call