Abstract
Hyperspectral unmixing is a process to identify the constituent materials and estimate the corresponding fractions from the mixture, nonnegative matrix factions ( NMF ) is suitable as a candidate for the linear spectral mixture mode, has been applied to the unmixing hyperspectral data. Unfortunately, the local minima is cause by the nonconvexity of the objective function makes the solution nonunique, thus only the nonnegativity constraint is not sufficient enough to lead to a well define problems. Therefore, two inherent characteristic of hyperspectal data, piecewise smoothness ( both temporal and spatial ) of spectral data and sparseness of abundance fraction of every material, are introduce to the NMF. The adaptive potential function from discontinuity adaptive Markov random field model is used to describe the smoothness constraint while preserving discontinuities is spectral data. At the same time two NMF algorithms, non smooth NMS and NMF with sparseness constraint, are used to quantify the degree of sparseness of material abundances. Experiment using the synthetic and real data demonstrate the proposed algorithms provides an effective unsupervised technique for hyperspectial unmixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.