Abstract

In linear perturbation theory, a static perturber in the vicinity of a Schwarzschild black hole (BH) enhances [suppresses] the Gauss-Bonnet (GB) curvature invariant, RGB, in the high [low] tide regions. By analysing exact solutions of the vacuum Einstein field equations describing one or two BHs immersed in a multipolar gravitational field, which is locally free of pathologies, including conical singularities, we study the corresponding non-linear tides on a fiducial BH, in full General Relativity (GR). We show that the tidal field due to a far away, or close by, static BH creates high/low tides that can deviate not only quantitatively but also qualitatively from the weak field/Newtonian pattern. Remarkably, the suppression in low tide regions never makes RGB negative on the BH, even though the horizon Gaussian curvature may become negative; but RGB can vanish in a measure zero set, a feature qualitatively recovered in a Newtonian analogue model. Thus, purely gravitational, static, tidal interactions in GR, no matter how strong, cannot induce GB− scalarization. We also show that a close by BH produces noticeable asymmetric tides on another (fiducial) BH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.