Abstract
According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if they are surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. We show that the subsequent formulation of the no-hair theorem holds nonetheless: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity is that of a Schwarzschild black hole. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure the distortion, vanish as was already shown in approximations to general relativity. But here we proof this property of black holes in full general relativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.