Abstract
We present a review analyzing the effects of coupling of transverse magnons with longitudinal spin fluctuations in isotropic itinerant ferro- and antiferromagnets. It is shown that this coupling essentially changes the spectrum of longitudinal fluctuations. At low-temperatures their spectrum is dominated by the linear Landau relaxation, is purely quasielastic and described by a broad central peak of a paramagnon type. On approaching the critical temperature non-linear magnetic relaxation due to mode–mode couplings can dominate and lead to a rapid increase of the central peak and to a new mechanism of magnetic phase transitions governed by non-linear spin fluctuations. The formalism is applied to the CMR manganites where the observed quasielastic fluctuations can be viewed as non-linear spin-lattice fluctuations strongly affected by magnons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.