Abstract

The Heisenberg model cannot uncritically be applied to itinerant-electron magnets, including those that show noncollinear order. Density functional theory is, therefore, generalized to apply to noncollinear itinerant-electron magnets. The appropriate Kohn-Sham equations are discussed and the total energy of Spiral Magnetic Order (SMO) is found to describe the ground states of those magnets that possess a high-moment to low-moment transition such as, e.g., INVAR. Concerning excited-states properties, the energy spectrum of transverse and longitudinal spin fluctuations can be estimated with the total energy of SMO and allows a determination of thermal properties of itinerant-electron magnets. As an example calculated results for bcc-Fe are discussed in detail and compared with experimental results. Furthermore, results for Co, Ni and FeCo are collected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call