Abstract

The present paper aims at weak non-linear stability analysis followed by linear analysis of nite-amplitude Rayleigh-Benard magneto convection problem in an electrically conducting Newtonian liquid with heat source/sink. It is shown that the internal Rayleigh number, ther- morheological parameter, and the Chandrasekhar number in uence the onset of convection. The generalized Lorenz model derived for the prob- lem is essentially the classical Lorenz model but with some coecient depending on the variable heat source (sink), viscosity, and the applied magnetic eld. The result of the parameters' in uence on the critical Rayleigh number explains their in uence on the Nusselt number. It is found that an increasing strength of the magnetic eld is to stabilize the system and diminishes heat transport whereas the heat source and variable viscosity in-tandem to work system unstable and enhances heat transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call