Abstract

The onset of thermal instability with hybrid nanoparticles Al2O3–Cu in nanofluid is investigated with the combined effects of variable gravity, variable heat source and Lorentz force in a porous medium. Its applications are in many areas like chemical engineering, geophysics, astrophysics, etc. Based on literature, many gravity variations are assumed in the present analysis, along with a space-dependent heat source/sink parameter that varies along the width of the channel. The finite difference-based Lobatto IIIa method has been applied to solve the system under no nanoparticle flux and rough boundary conditions, and approximate analytical results are generated for some special cases. The roughness parameters ([Formula: see text]), Darcy number (Da), gravity variation function ([Formula: see text]), and Chandrasekhar number (Q) delay the onset of convection and thus stabilize the system. It is also observed that an increase in the Lewis number Le, power index in variable heat source, and the nanoparticle Rayleigh concentration number Rn decreases the critical Rayleigh number [Formula: see text] which destabilizes the system, and increases the critical wave number, which enlarges the convection cell size. In the case of exponential variation ([Formula: see text]) in the gravity variation parameter, the system becomes stabilized due to a delay in the onset of convection. In addition, we have considered multilayer perceptron-artificial neural network (MLP-ANN) computation to predict the critical Rayleigh number as per function of important controlling parameters. The data set of 625 observations is chosen keeping 70% for testing, 15% for training and 15% for validation using efficient Levenberg−Marquardt back propagation algorithm with optimal accuracy measures i.e., root mean square deviation (RMSE), root mean relative error (RMRE) and [Formula: see text] (coefficient of determination). Finally, the regression plots are drawn that correlate, target and output data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.