Abstract

This paper details the non-linear dynamic behaviours and control of a non-linear semi-active suspension system using a quarter-car model under kinematic excitation by a road surface profile. The results of local and global bifurcation analysis indicate that the hysteretic non-linear characteristics of damping force cause the suspension system to exhibit codimension-two bifurcation, resulting in homoclinic orbits and a pitchfork bifurcation. The complex dynamic behaviour of automotive suspension systems was examined using a bifurcation diagram, phase portraits, a Poincaré map, and frequency spectra. We also used Lyapunov exponent to identify the occurrence of chaotic motion and verify our analysis. Finally, a dither signal control was used to convert chaotic behaviours into periodic motion. Simulation results verify the effectiveness of the proposed control method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call