Abstract
The present study investigates the non-linear behavior of spherical shells under the influence of static circular ring loads. It is assumed that the material is isotropic and linearly elastic. The differential equations comprising the equilibrium equations, constitutive laws and kinematic equations are converted into non-linear algebraic equations by employing the method of finite differences. Respective non-linear algebraic equations are solved numerically by using the Newton–Raphson Method. The curves pertaining to the circular ring load versus the deflection at the application point of the ring load and the circular ring load versus the deflection at the apical point of the shell are plotted and compared for various shell radius/thickness ratios and parallel circle radii values.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have