Abstract
Advection–diffusion equations (ADEs) are concise and tractable mathematical descriptions of population distributions used widely to address spatial problems in applied and theoretical ecology. We assessed the potential of non-linear ADEs to approximate over very large time and space scales the spatial distributions resulting from social behaviors such as swarming and schooling, in which populations are subdivided into many groups of variable size, velocity and directional persistence. We developed a simple numerical scheme to estimate coefficients in non-linear ADEs from individual-based model (IBM) simulations. Alignment responses between neighbors within groups quantitatively and qualitatively affected how populations moved. Asocial and swarming populations, and schooling populations with weak alignment tendencies, were well approximated by non-linear ADEs. For these behaviors, numerical estimates such as ours could enhance realism and efficiency in ecosystem models of social organisms. Schooling populations with strong alignment were poorly approximated, because (in contradiction to assumptions underlying the ADE approach) effective diffusion and advection were not uniquely defined functions of local density. PDE forms other than ADEs are apparently required to approximate strongly aligning populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.