Abstract
We consider the problem of determining analytically some exact solutions of the concentration u(x, y, t) of particles moving by diffusion and advection or drift. It is assumed that the advection is nonlinear. The driven diffusive flow is impeded by an impenetrable obstacle (rod) of length L. The exact solutions for u are evaluated for small and big values of vL/D, where v is the drift velocity and D is the diffusion coefficient. The results show that in some regions in the (x, y) plane the concentration first increases (or decreases) monotonically and then is nearly constant after some critical length L. The location at which u is nearly constant depends on the nature of the driving field v/D. This problem has relevance for the size segregation of particulate matter which results from the relative motion of different-size particles induced by shaking. Methods of symmetry reduction are used in solving the nonlinear advection-diffusion equation in (2+1) dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.